COVID-19 Information

Public health information (CDC)

Research information (NIH)

SARS-CoV-2 data (NCBI)

Prevention and treatment information (HHS)

Español

FULL TEXT LINKS

Stem Cell Res. 2021 Sep 3;56:102530. doi: 10.1016/j.scr.2021.102530. Online ahead of print.

Generation of a laminopathies-specific iPSC line EHTJUi005-A-3 with homozygous knockout of the LMNA gene by CRISPR/Cas9 technology

Ji-Zhen Lu 1 , Zhi-Bin Qiao 1 , Lu Zhang 1 , Hong-Xia Cao 1 , Zhi-Hui Bai 1 , Yi-Yao Qi 1 , Han-Yu Zhu 1 , Ya-Qi Chen 1 , Shou-Mei Zhang 1 , Xiu-Hua Yan 1 , Yan Bao 1 , Wen-Wen Jia 2 , Zhong-Min Liu 3

Affiliations

PMID: 34507144 DOI: 10.1016/j.scr.2021.102530

Free article

Abstract

LAMIN A/C, encoded by the LMNA gene, supports the normal structure of the cell nucleus and regulates the connection between the nucleus and the cytoskeleton as a component of the nucleus envelope. The loss of expression and function of the LMNA gene would lead to the occurrence of congenital muscular dystrophy and Emery-Dreifuss muscular dystrophy which are collectively named as laminopathies. Here, we report a human induced pluripotent stem cell (iPSC) line (EHTJUi005-A-3) generated from a wild iPSC (EHTJUi005-A) with homozygous knockout of the gene LMNA through CRISPR/Cas9. This iPSC line provides a useful research model for studying laminopathies disease.

Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.

LinkOut - more resources

Full Text Sources

Elsevier Science

Miscellaneous

NCI CPTAC Assay Portal