Bayesian modeling to predict malignant hyperthermia susceptibility and pathogenicity of \textit{RYR1}, \textit{CACNA1S} and \textit{STAC3} variants.

Sadhasivam S1, Brandom BW2, Henker RA2, McAuliffe JJ3.

\textbf{Author information}

1 Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

2 The North American Malignant Hyperthermia Registry of the Malignant Hyperthermia Association of the United States (MHAUS), Department of Nurse Anesthesia, University of Pittsburgh, Pittsburgh, PA 15261, USA.

3 Department of Anesthesia, Cincinnati Children's Hospital Medical Center, The University of Cincinnati, Cincinnati, OH 45229, USA.

\textbf{Abstract}

\textbf{Aim:} Identify variants in \textit{RYR1}, \textit{CACNA1S} and \textit{STAC3}, and predict malignant hyperthermia (MH) pathogenicity using Bayesian statistics in individuals clinically treated as MH susceptible (MHS).

\textbf{Materials \& methods:} Whole exome sequencing including \textit{RYR1}, \textit{CACNA1S} and \textit{STAC3} performed on 64 subjects with: MHS; suspected MH event or first-degree relative; and MH negative. Variant pathogenicity was estimated using \textit{in silico} analysis, allele frequency and prior data to calculate Bayesian posterior probabilities. \textbf{Results:} Bayesian statistics predicted \textit{CACNA1S} variant p.Thr1009Lys and \textit{RYR1} variants p.Ser1728Phe and p.Leu4824Pro are likely pathogenic, and novel \textit{STAC3} variant p.Met187Thr has uncertain significance. Nearly a third of MHS subjects had only benign variants. \textbf{Conclusion:} Bayesian method provides new approach to predict MH pathogenicity of genetic variants.

\textbf{KEYWORDS:} CACNA1S ; RYR1 ; STAC3 ; contracture test; exome; genetic; malignant hyperthermia; muscle; next-generation sequencing; novel; pathologic

PMID: 31559918 DOI: 10.2217/pgs-2019-0055