Challenging the "chromatin hypothesis" of cardiac laminopathies with LMNA mutant iPS cells.

Mozzetta C¹, Tedesco FS².³.

Author information
1 Institute of Molecular Biology and Pathology, National Research Council at Sapienza University of Rome, Rome, Italy chiara.mozzetta@uniroma1.it.
2 Department of Cell and Developmental Biology, University College London, London, UK f.s.tedesco@ucl.ac.uk.
3 Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK.

Abstract
Lamins A and C are intermediate filaments that provide structural support to the nuclear envelope and regulate gene expression. In this issue, Bertero et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201902117) report that although lamin A/C haploinsufficient cardiomyocytes show disease-associated phenotypes, those changes cannot be explained by alterations in chromatin compartmentalization.

© 2019 Mozzetta and Tedesco.

Comment on
Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. [J Cell Biol. 2019]

PMID: 31427369 DOI: 10.1083/jcb.201907166