Mobility shift of beta-dystroglycan as a marker of \textit{GMPPB} gene-related muscular dystrophy.

Sarkozy A1, Torelli S1, Mein R2, Henderson M3, Phadke R1, Feng L1, Sewry C1,4, Ala P1, Yau M2, Bertoli M5,6, Willis T4, Hammans S7, Manzur A1, Sframeli M1, Norwood F8, Rakowicz W9, Radunovic A10, Vaidya SS10, Parton M11, Walker M12, Marino S13, Offiah C14, Farrugia ME15, Mamutse G16, Marini-Bettolo C5, Wraige E17, Beeson D18, Lochmüller H6, Straub V5, Bushby K5, Barresi R$^{#3,5}$, Muntoni F1.

Author information

1. Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK.
2. DNA Laboratory, Viapath, Guy's Hospital, London, UK.
3. Rare Diseases Advisory Group Service for Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Newcastle upon Tyne, UK.
4. The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK.
5. The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK.
6. Northern Genetics Service, Newcastle upon Tyne NHS Trust, Newcastle upon Tyne, UK.
7. Wessex Neurological Centre, University Hospital of Southampton, Southampton, UK.
8. Department of Neurology, King's College Hospital, London, UK.
9. Department of Neurology, Hampshire Hospitals NHS Foundation Trust, Royal Hampshire County Hospital, Winchester, UK.
10. The Royal London Hospital, London, UK.
11. MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK.
12. Department of Cellular Pathology, Southampton University Hospitals, Southampton, UK.
13. Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK.
14. Department of Radiology, Royal London Hospital, London, UK.
15. Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK.
16. Department of Neurology, Norfolk and Norwich University Hospital, Norwich, UK.
17. Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St...
Abstract

BACKGROUND: Defects in glycosylation of alpha-dystroglycan (α-DG) cause autosomal-recessive disorders with wide clinical and genetic heterogeneity, with phenotypes ranging from congenital muscular dystrophies to milder limb girdle muscular dystrophies. Patients show variable reduction of immunoreactivity to antibodies specific for glycoepitopes of α-DG on a muscle biopsy. Recessive mutations in 18 genes, including guanosine diphosphate mannose pyrophosphorylase B (GMPPB), have been reported to date. With no specific clinical and pathological handles, diagnosis requires parallel or sequential analysis of all known genes.

METHODS: We describe clinical, genetic and biochemical findings of 21 patients with GMPPB-associated dystroglycanopathy.

RESULTS: We report eight novel mutations and further expand current knowledge on clinical and muscle MRI features of this condition. In addition, we report a consistent shift in the mobility of beta-dystroglycan (β-DG) on Western blot analysis of all patients analysed by this mean. This was only observed in patients with GMPPB in our large dystroglycanopathy cohort. We further demonstrate that this mobility shift in patients with GMPPB was due to abnormal N-linked glycosylation of β-DG.

CONCLUSIONS: Our data demonstrate that a change in β-DG electrophoretic mobility in patients with dystroglycanopathy is a distinctive marker of the molecular defect in GMPPB.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

PMID: 29437916 DOI: 10.1136/jnnp-2017-316956

[Indexed for MEDLINE]